Package 'nicheROVER'

Title: Niche Region and Niche Overlap Metrics for Multidimensional Ecological Niches
Description: Implementation of a probabilistic method to calculate 'nicheROVER' (_niche_ _r_egion and niche _over_lap) metrics using multidimensional niche indicator data (e.g., stable isotopes, environmental variables, etc.). The niche region is defined as the joint probability density function of the multidimensional niche indicators at a user-defined probability alpha (e.g., 95%). Uncertainty is accounted for in a Bayesian framework, and the method can be extended to three or more indicator dimensions. It provides directional estimates of niche overlap, accounts for species-specific distributions in multivariate niche space, and produces unique and consistent bivariate projections of the multivariate niche region. The article by Swanson et al. (2015) <doi:10.1890/14-0235.1> provides a detailed description of the methodology. See the package vignette for a worked example using fish stable isotope data.
Authors: Martin Lysy [aut, cre], Ashley D. Stasko [aut], Heidi K. Swanson [aut]
Maintainer: Martin Lysy <[email protected]>
License: GPL-3
Version: 1.1.2
Built: 2024-12-19 05:07:52 UTC
Source: https://github.com/mlysy/nicherover

Help Index


(Niche) (R)egion and Niche (Over)lap Metrics for Multidimensional Ecological Niches.

Description

This package uses a probabilistic method to calculate niche regions and pairwise niche overlap using multidimensional niche indicator data (e.g., stable isotopes, environmental variables, etc.). The niche region is defined as the joint probability density function of the multidimensional niche indicators at a user-defined probability alpha (e.g., 95%). Uncertainty is accounted for in a Bayesian framework, and the method can be extended to three or more indicator dimensions. It provides directional estimates of niche overlap, accounts for species-specific distributions in multivariate niche space, and produces unique and consistent bivariate projections of the multivariate niche region. See Swanson et al. (2014) for a detailed description and worked example below using fish stable isotope data.

Author(s)

Maintainer: Martin Lysy [email protected]

Authors:

  • Ashley D. Stasko

  • Heidi K. Swanson

References

Swanson, H.K., Lysy, M., Stasko, A.D., Power, M., Johnson, J.D., and Reist, J.D. "A new probabilistic method for quantifying n-dimensional ecological niches and niche overlap." Ecology: Statistical Reports 96:2 (2015): 318-324. doi:10.1890/14-0235.1.

See Also

Useful links:

Examples

# analysis for fish data

data(fish) # 4 fish, 3 isotopes
aggregate(fish[2:4], fish[1], mean) # isotope means per fish

# random draws from posterior distribution with default prior
nsamples <- 500
fish.par <- tapply(1:nrow(fish), fish$species,
                   function(ii) niw.post(nsamples = nsamples, X = fish[ii,2:4]))

# display p(mu | X) and p(Sigma | X) for each fish
clrs <- c("black", "red", "blue", "orange") # colors for each species
par(mar = c(4.2, 4.2, 2, 1)+.1)
niche.par.plot(fish.par, col = clrs)
legend(x = "topright", legend = names(fish.par), fill = clrs)

# 2-d projections of 10 niche regions
nsamples <- 10
fish.par <- tapply(1:nrow(fish), fish$species,
                   function(ii) niw.post(nsamples = nsamples, X = fish[ii,2:4]))

# format data for plotting function
fish.data <- tapply(1:nrow(fish), fish$species, function(ii) X = fish[ii,2:4])

niche.plot(niche.par = fish.par, niche.data = fish.data, pfrac = .05,
           iso.names = expression(delta^{15}*N, delta^{13}*C, delta^{34}*S),
           col = clrs, xlab = expression("Isotope Ratio (per mille)"))

# niche overlap plots for 95% niche region sizes

# overlap calculation.  use nsamples = nprob = 1e4 for higher accuracy.
nsamples <- 500
over.stat <- overlap(fish.par, nreps = nsamples, nprob = nsamples, alpha = .95)

# overlap plot
overlap.plot(over.stat, col = clrs, mean.cred.col = "turquoise",
             equal.axis = TRUE,
             xlab = "Overlap Probability (%) -- Niche Region Size: 95%")

Point coordinates for a 2-D ellipse.

Description

Calculates coordinates of points for plotting a 2-dimensional ellipse based on user-defined parameters. Can be used for exploratory data analysis to produce ellipses at a given niche region size (e.g., α=95%\alpha = 95\%).

Usage

ellipse(mu, V, alpha = 0.95, n = 100)

Arguments

mu

Centre of ellipse. A vector of length 2.

V

Scale of ellipse. A 2x2 matrix. See 'Details'.

alpha

Niche region size. See 'Details'.

n

Number of points to return for plotting.

Details

This function provides the coordinates needed to plot a 2-dimensional ellipse based on user-defined parameters, such that X = c(x,y) satisfies the equation

(Xμ)V1(Xμ)=C,(X-\mu)' V^{-1} (X-\mu) = C,

where C=qchisq(alpha, df = 2)C=\code{qchisq(alpha, df = 2)}.

Value

Returns a matrix of coordinates cbind(x,y) to plot a 2-dimensional ellipse.

See Also

niche.plot() for plotting.

Examples

mu <- rnorm(2)
V <- crossprod(matrix(rnorm(4), 2, 2))
ell.pts <- ellipse(mu = mu, V = V, alpha = .9, n = 100)
plot(ell.pts, col = rainbow(110)[1:100], type = "o")
points(mu[1], mu[2], pch = "+")

Fish stable isotope dataset.

Description

A dataset containing values for three stable isotopes measured in the muscle tissue of four species of arctic fish. For use in examples.

Usage

fish

Format

A data frame with 278 rows (observations) and 4 columns (species, δ15N\delta^{15}N, δ13C\delta^{13}C, and δ34S\delta^{34}S).

Details

This dataset contains δ15N\delta^{15}N, δ13C\delta^{13}C, and delta34Sdelta^{34}S values for the following fish species:

  • ARCS - Arctic Cisco (Coregonus autumnalis), n=69n = 69.

  • BDWF - Broad Whitefish (Coregonus nasus), n=71n = 71.

  • LKWF - Lake Whitefish (Coregonus clupeaformis), n=67n = 67.

  • LSCS - Least Cisco (Coregonus sardinella), n=70n = 70

Source

Fish were collected between 2007 and 2008 from an estuarine area of the Beaufort Sea, North and West of the Mackenzie Delta at Phillips Bay, Yukon Territory, Canada (69.28 N, 138.49 W).

Examples

head(fish)
aggregate(fish[2:4], fish[1], mean)

Plot for niche parameters.

Description

For one or more species, plots some or all of the niche parameters μ\mu and Σ\Sigma.

Usage

niche.par.plot(
  niche.par,
  plot.mu = TRUE,
  plot.Sigma = TRUE,
  plot.index,
  col,
  ndens = 512,
  ylab
)

Arguments

niche.par

List with nspecies = length(niche.par), each element of which is a list with parameters mu and Sigma. See 'Details'.

plot.mu

Logical. If TRUE, plot the distribution of μ\mu for each niche indicator (e.g., stable isotope). See 'Details'.

plot.Sigma

Logical. If TRUE, plot the distribution of Σ\Sigma for each niche indicator. See 'Details'.

plot.index

Either a scalar of a numeric vector of length 2. If plot.index = i then plot the distribution of μi\mu_i. If plot.index = c(i,j) then plot the distribution of Σij\Sigma_{ij}.

col

Vector of colors in which to plot each species.

ndens

Number of points at which to evaluate density estimates.

ylab

Optional label for yy-axis. If missing, defaults to p(μiX)p(\mu_i | X) and p(ΣijX)p(\Sigma_{ij} | X).

Details

Each element of the list niche.par is a distribution of niche parameters. That is, names(niche.par[[1]]) = c("mu", "Sigma"), and if niso is the number of niche indicators (e.g., stable isotopes), then dim(niche.par[[1]]$mu) = c(nsamples, niso) and dim(niche.par[[1]]$Sigma) = c(niso, niso, nsamples).

Value

Returns a plot of the distribution of some or all niche parameters.

See Also

niw.post(), niiw.post() for niche parameter output, stats::density() for density estimation from sample data.

Examples

# fish data
data(fish)

# generate parameter draws from the "default" posteriors of each fish
nsamples <- 1e3
system.time({
  fish.par <- tapply(1:nrow(fish), fish$species,
                     function(ii) niw.post(nsamples = nsamples, X = fish[ii,2:4]))
})

# various parameter plots
clrs <- c("black", "red", "blue", "orange") # colors for each species

# mu1, mu2, and Sigma12
par(mar = c(4, 4, .5, .1)+.1, mfrow = c(1,3))
niche.par.plot(fish.par, col = clrs, plot.index = 1)
niche.par.plot(fish.par, col = clrs, plot.index = 2)
niche.par.plot(fish.par, col = clrs, plot.index = 1:2)
legend("topright", legend = names(fish.par), fill = clrs)

# all mu
niche.par.plot(fish.par, col = clrs, plot.mu = TRUE, plot.Sigma = FALSE)
legend("topright", legend = names(fish.par), fill = clrs)

# all mu and Sigma
par(mar = c(4.2, 4.2, 2, 1)+.1)
niche.par.plot(fish.par, col = clrs, plot.mu = TRUE, plot.Sigma = TRUE)
legend("topright", legend = names(fish.par), fill = clrs)

Plot for 2-d projection of niche regions.

Description

For one or more species, creates a series of plots: (i) the raw niche indicators (e.g., stable isotope) data, (ii) their density estimates, and (iii) 2-dimensional projections of probabilistic niche regions based on nn-dimensionsional data.

Usage

niche.plot(
  niche.par,
  niche.data,
  alpha = 0.95,
  species.names,
  iso.names,
  lims,
  col,
  ndens = 512,
  pfrac = 0,
  xlab,
  legend = TRUE
)

Arguments

niche.par

A list of length nspecies, each element of which in turn is a list with elements mu and Sigma. Each of these will correspond to an ellipse being drawn for that species in the corresponding 2-d plane. See 'Example'.

niche.data

A list of length nspecies, each element of which is a matrix with observations along the rows and niche indicators (e.g., stable isotopes) along the columns.

alpha

Size of the niche region to plot. Defaults to 0.95.

species.names

Names of the species. Defaults to names(niche.par).

iso.names

Names of the niche indicators (or isotopes) to plot. Defaults to colnames(niche.par).

lims

Two-row matrix of range limits for each niche indicator. Defaults to include all ellipses.

col

Vector of colours in which each species will be drawn.

ndens

Number of points at which to evaluate kernel density estimates.

pfrac

Fraction of the plot on which to display 1-dimensional raw niche indicator data. pfrac = 0 means don't display the raw data in 1-d.

xlab

Title of plot, located on the bottom. Defaults to no title.

legend

Whether or not to add a legend. Defaults to TRUE.

Details

A set of plots is created for each pairwise combination of niche indicators. Below the diagonal are scatterplots for each species, above the diagonal are ellipses corresponding to 2-d projections of the probabilistic niche regions. The diagonal displays density estimates for each indicator, and optionally the raw 1-d data. See Swanson et al. (2015) for detailed description of the probabilistic niche region.

Value

Returns a series of plots displaying niche indicator data and their probabilistic niche projections.

References

Swanson, H.K., Lysy, M., Stasko, A.D., Power, M., Johnson, J.D., and Reist, J.D. "A new probabilistic method for quantifying n-dimensional ecological niches and niche overlap." Ecology: Statistical Reports 96:2 (2015): 318-324. doi:10.1890/14-0235.1.

See Also

overlap.plot(), niw.post(), niiw.post().

Examples

data(fish) # 4 fish, 3 isotopes

# generate 10 parameter draws from the posteriors
# of each fish with default prior
nsamples <- 10
fish.par <- tapply(1:nrow(fish), fish$species,
                   function(ii) niw.post(nsamples = nsamples, X = fish[ii,2:4]))

# format data for plotting function
fish.data <- tapply(1:nrow(fish), fish$species, function(ii) X = fish[ii,2:4])

clrs <- c("black", "red", "blue", "orange") # colors for each species
niche.plot(niche.par = fish.par, niche.data = fish.data, pfrac = .1,
           iso.names = expression(delta^{15}*N, delta^{13}*C, delta^{34}*S),
           col = clrs, xlab = expression("Isotope Ratio (per mille)"))

Uniform sampling from an elliptical niche region.

Description

Uniform sampling from an elliptical niche region.

Usage

niche.runif(n, mu, Sigma, alpha = 0.95)

Arguments

n

Number of random draws.

mu

Mean vector.

Sigma

Variance matrix.

alpha

Probabilistic niche size

Value

IID draws from a uniform distribution on the elliptical niche region.

See Also

ellipse() and niche.size() for the definition of the elliptical niche region.

Examples

# 2d example
d <- 2 # number of dimensions
V <- crossprod(matrix(rnorm(4),d,d))
mu <- rnorm(d)
plot(ellipse(mu, V), type = "l")
points(niche.runif(1e4, mu, V), col = "brown", pch = ".")

Calculate the size of an elliptical niche region.

Description

Calculate the size of an elliptical niche region.

Usage

niche.size(Sigma, alpha = 0.95)

Arguments

Sigma

Variance matrix for normally distributed niche axes.

alpha

Probabilistic niche size.

Details

For a given niche region NRN_R, the niche size is defined as the hypervolume of this region: NS=xNRdxN_S = \int_{x \in N_R} d x.

Value

Hypervolume niche size.

Examples

# for each species, size of 95% niche region using sample variance
tapply(1:nrow(fish), fish$species, function(ind) {
  X <- fish[ind,2:4] # all measurements for given species
  Sighat <- var(X) # sample variance
  niche.size(Sigma = Sighat, alpha = .95)
})

Random draws from the posterior distribution with Normal-Independent-Inverse-Wishart (NIIW) prior.

Description

Given iid dd-dimensional niche indicators X=(X1,,XN)X = (X_1,\ldots,X_N) with XiN(μ,Σ)X_i \sim N(\mu, \Sigma), this function generates random draws from p(μ,ΣX)p(\mu,\Sigma | X) for the Normal-Independent-Inverse-Wishart (NIIW) prior.

Usage

niiw.post(nsamples, X, lambda, Omega, Psi, nu, mu0 = lambda, burn)

Arguments

nsamples

The number of posterior draws.

X

A data matrix with observations along the rows.

lambda

Mean of μ\mu. See 'Details'.

Omega

Variance of μ\mu. Defaults to Omega = 0. See 'Details'.

Psi

Scale matrix of Σ\Sigma. Defaults to Psi = 0. See 'Details'.

nu

Degrees of freedom of Σ\Sigma. Defaults to nu = ncol(X)+1. See 'Details'.

mu0

Initial value of μ\mu to start the Gibbs sampler. See 'Details'.

burn

Burn-in for the MCMC sampling algorithm. Either an integer giving the number of initial samples to discard, or a fraction with ⁠0 < burn < 1⁠. Defaults to burn = floor(nsamples/10).

Details

The NIIW distribution p(μ,Σλ,κ,Ψ,ν)p(\mu, \Sigma | \lambda, \kappa, \Psi, \nu) is defined as

ΣW1(Ψ,ν),μΣN(λ,Ω).\Sigma \sim W^{-1}(\Psi, \nu), \quad \mu | \Sigma \sim N(\lambda, \Omega).

The default value Omega = 0 uses the Lebesque prior on μ\mu: p(μ)1p(\mu) \propto 1. In this case the NIW and NIIW priors produce identical resuls, but niw.post() is faster.

The default value Psi = 0 uses the scale-invariant prior on Σ\Sigma: p(Σ)Σ(ν+d+1)/2p(\Sigma) \propto |\Sigma|^{-(\nu+d+1)/2}.

The default value nu = ncol(X)+1 for Omega = 0 and Psi = 0 makes E[μX]=colMeans(X)E[\mu|X]=`colMeans(X)` and E[ΣX]=var(X)E[\Sigma | X]=`var(X)`.

Random draws are obtained by a Markov chain Monte Carlo (MCMC) algorithm; specifically, a Gibbs sampler alternates between draws from p(μΣ,X)p(\mu | \Sigma, X) and p(Σμ,X)p(\Sigma | \mu, X), which are Normal and Inverse-Wishart distributions respectively.

Value

Returns a list with elements mu and Sigma of sizes c(nsamples, length(lambda)) and c(dim(Psi), nsamples).

See Also

niw.post(), rwish().

Examples

# simulate normal data with mean and variance (mu0, Sigma0)
d <- 4
mu0 <- rnorm(d)
Sigma0 <- matrix(rnorm(d^2), d, d)
Sigma0 <- Sigma0 %*% t(Sigma0)
N <- 1e2
X <- matrix(rnorm(N*d), N, d) # iid N(0,1)
X <- t(t(X %*% chol(Sigma0)) + mu0) # each row is N(mu0, Sigma)

# prior parameters
# flat prior on mu
lambda <- 0
Omega <- 0
# informative prior on Sigma
Psi <- crossprod(matrix(rnorm(d^2), d, d))
nu <- 5

# sample from NIIW posterior
nsamples <- 2e3
system.time({
  siiw <- niiw.post(nsamples, X, lambda, Omega, Psi, nu, burn = 100)
})

# sample from NIW posterior
kappa <- 0
system.time({
  siw <- niw.post(nsamples, X, lambda, kappa, Psi, nu)
})

# check that posteriors are the same

# p(mu | X)
clrs <- c("black", "red")
par(mar = c(4.2, 4.2, 2, 1)+.1)
niche.par.plot(list(siiw, siw), col = clrs, plot.mu = TRUE, plot.Sigma = FALSE)
legend(x = "topright", legend = c("NIIW Prior", "NIW Prior"), fill = clrs)

# p(Sigma | X)
par(mar = c(4.2, 4.2, 2, 1)+.1)
niche.par.plot(list(siiw, siw), col = clrs, plot.mu = FALSE, plot.Sigma = TRUE)
legend(x = "topright", legend = c("NIIW Prior", "NIW Prior"), fill = clrs)

Posterior coefficients of the Normal-Inverse-Wishart distribution with its conjugate prior.

Description

Given iid dd-dimensional niche indicators X=(X1,,XN)X = (X_1,\ldots,X_N) with XiN(μ,Σ)X_i \sim N(\mu, \Sigma), this function calculates the coefficients of the Normal-Inverse-Wishart (NIW) posterior p(μ,ΣX)p(\mu, \Sigma | X) for a conjugate NIW prior. Together with niw.mom(), this can be used to rapidly compute the point estimates E[μX]E[\mu | X] and E[ΣX]E[\Sigma | X].

Usage

niw.coeffs(X, lambda, kappa, Psi, nu)

Arguments

X

A data matrix with observations along the rows.

lambda

Location parameter. See 'Details'.

kappa

Scale parameter. Defaults to kappa = 0. See 'Details'.

Psi

Scale matrix. Defaults to Psi = 0. See 'Details'.

nu

Degrees of freedom. Defaults to nu = ncol(X)+1. See 'Details'.

Details

The NIW distribution p(μ,Σλ,κ,Ψ,ν)p(\mu, \Sigma | \lambda, \kappa, \Psi, \nu) is defined as

ΣW1(Ψ,ν),μΣN(λ,Σ/κ).\Sigma \sim W^{-1}(\Psi, \nu), \quad \mu | \Sigma \sim N(\lambda, \Sigma/\kappa).

The default value kappa = 0 uses the Lebesque prior on μ\mu: p(μ)1p(\mu) \propto 1.

The default value Psi = 0 uses the scale-invariant prior on Σ\Sigma: p(Σ)Σ(ν+d+1)/2p(\Sigma) \propto |\Sigma|^{-(\nu+d+1)/2}.

The default value nu = ncol(X)+1 for kappa = 0 and Psi = 0 makes E[μX]=colMeans(X)E[\mu|X]=`colMeans(X)` and E[ΣX]=var(X)E[\Sigma | X]=`var(X)`.

Value

Returns a list with elements lambda, kappa, Psi, nu corresponding to the coefficients of the NIW posterior distribution p(μ,ΣX)p(\mu, \Sigma | X).

See Also

rniw(), niw.mom(), niw.post().

Examples

# NIW prior coefficients
d <- 3
lambda <- rnorm(d)
kappa <- 5
Psi <- crossprod(matrix(rnorm(d^2), d, d))
nu <- 10

# data
data(fish)
X <- fish[fish$species == "ARCS",2:4]

# NIW posterior coefficients
post.coef <- niw.coeffs(X, lambda, kappa, Psi, nu)

# compare
mu.mean <- niw.mom(post.coef$lambda, post.coef$kappa, post.coef$Psi, post.coef$nu)$mu$mean
mu.est <- rbind(prior = niw.mom(lambda, kappa, Psi, nu)$mu$mean,
                data = colMeans(X),
                post = mu.mean)
round(mu.est, 2)

Mean and variance of the Normal-Inverse-Wishart distribution.

Description

This function computes the mean and variance of the Normal-Inverse-Wishart (NIW) distribution. Can be used to very quickly compute Bayesian point estimates for the conjugate NIW prior.

Usage

niw.mom(lambda, kappa, Psi, nu)

Arguments

lambda

Location parameter. See 'Details'.

kappa

Scale parameter. See 'Details'.

Psi

Scale matrix. See 'Details'.

nu

Degrees of freedom. See 'Details'.

Details

The NIW distribution p(μ,Σλ,κ,Ψ,ν)p(\mu, \Sigma | \lambda, \kappa, \Psi, \nu) is defined as

ΣW1(Ψ,ν),μΣN(λ,Σ/κ).\Sigma \sim W^{-1}(\Psi, \nu), \quad \mu | \Sigma \sim N(\lambda, \Sigma/\kappa).

Note that cov(μ,Σ)=0(\mu, \Sigma) = 0.

Value

Returns a list with elements mu and Sigma, each containing lists with elements mean and var. For mu these elements are of size length(lambda) and c(length(lambda),length(lambda)). For Sigma they are of size dim(Psi) and c(dim(Psi), dim(Psi)), such that cov(Σij,Σkl)=(\Sigma_{ij}, \Sigma_{kl})=Sigma$var[i,j,k,l].

See Also

rniw(), niw.coeffs(), niw.post().

Examples

# NIW parameters
d <- 3 # number of dimensions
lambda <- rnorm(d)
kappa <- 2
Psi <- crossprod(matrix(rnorm(d^2), d, d))
nu <- 10

# simulate data
niw.sim <- rniw(n = 1e4, lambda, kappa, Psi, nu)

# check moments
niw.mV <- niw.mom(lambda, kappa, Psi, nu)

# mean of mu
ii <- 1
c(true = niw.mV$mu$mean[ii], sim = mean(niw.sim$mu[,ii]))

# variance of Sigma
II <- c(1,2)
JJ <- c(2,3)
c(true = niw.mV$var[II[1],II[2],JJ[1],JJ[2]],
  sim = cov(niw.sim$Sigma[II[1],II[2],], niw.sim$Sigma[JJ[1],JJ[2],]))

Random draws from the posterior distribution with Normal-Inverse-Wishart (NIW) prior.

Description

Given iid dd-dimensional niche indicators X=(X1,,XN)X = (X_1,\ldots,X_N) with XiN(μ,Σ)X_i \sim N(\mu, \Sigma), this function generates random draws from p(μ,ΣX)p(\mu,\Sigma | X) for the Normal-Inverse-Wishart (NIW) prior.

Usage

niw.post(nsamples, X, lambda, kappa, Psi, nu)

Arguments

nsamples

The number of posterior draws.

X

A data matrix with observations along the rows.

lambda

Location parameter. See 'Details'.

kappa

Scale parameter. Defaults to kappa = 0. See 'Details'.

Psi

Scale matrix. Defaults to Psi = 0. See Details.

nu

Degrees of freedom. Defaults to nu = ncol(X)+1. See Details.

Details

The NIW distribution p(μ,Σλ,κ,Ψ,ν)p(\mu, \Sigma | \lambda, \kappa, \Psi, \nu) is defined as

ΣW1(Ψ,ν),μΣN(λ,Σ/κ).\Sigma \sim W^{-1}(\Psi, \nu), \quad \mu | \Sigma \sim N(\lambda, \Sigma/\kappa).

The default value kappa = 0 uses the Lebesque prior on μ\mu: p(μ)1p(\mu) \propto 1.

The default value Psi = 0 uses the scale-invariant prior on Σ\Sigma: p(Σ)Σ(ν+d+1)/2p(\Sigma) \propto |\Sigma|^{-(\nu+d+1)/2}.

The default value nu = ncol(X)+1 for kappa = 0 and Psi = 0 makes E[μX]=colMeans(X)E[\mu|X]=\code{colMeans(X)} and E[ΣX]=var(X)E[\Sigma | X]=\code{var(X)}.

Value

Returns a list with elements mu and Sigma of sizes c(nsamples, length(lambda)) and c(dim(Psi), nsamples).

See Also

rniw(), niiw.post().

Examples

# compare the default non-informative prior to an arbitrary informative prior
# for simulated data

# simulate normal data with mean and variance (mu0, Sigma0)
d <- 4
mu0 <- rnorm(d)
Sigma0 <- matrix(rnorm(d^2), d, d)
Sigma0 <- Sigma0 %*% t(Sigma0)
N <- 1e2
X <- matrix(rnorm(N*d), N, d) # iid N(0,1)
X <- t(t(X %*% chol(Sigma0)) + mu0) # each row is N(mu0, Sigma)

# informative prior parameters
lambda <- rnorm(d)
kappa <- 20
Psi <- crossprod(matrix(rnorm(d^2), d, d))
nu <- 5

# iid draws from informative prior pi(mu, Sigma)
nsamples <- 2e3
siw0 <- rniw(nsamples, lambda, kappa, Psi, nu)

# iid draws from posterior p(mu, Sigma | X) with informative prior
siw1 <- niw.post(nsamples, X, lambda, kappa, Psi, nu)

# iid draws from posterior p(mu, Sigma | X) with default noninformative prior
siw2 <- niw.post(nsamples, X)

# compare

# prior and posterior densities of mu
clrs <- c("orange", "red", "blue", "black")
ii <- 1
par(mar = c(4.2, 4.2, 2, 1)+.1)
niche.par.plot(list(siw0, siw1, siw2), col = clrs[1:3],
               plot.index = ii, ylab = "Density")
abline(v = mu0[ii], col = clrs[4]) # true value of mu
legend(x = "topright",
       legend = c(parse(text = paste0("pi(mu[", ii, "])")),
                  parse(text = paste0("p(mu[", ii, "]*\" | \"*X)*\", Informative Prior\"")),
                  parse(text = paste0("p(mu[", ii, "]*\" | \"*X)*\", Noninformative Prior\"")),
                  parse(text = paste0("\"True value of \"*mu[", ii, "]"))),
       fill = clrs)

# prior and posterior densities of Sigma
ii <- 1
jj <- 2
par(mar = c(4.2, 4.2, 2, 1)+.1)
niche.par.plot(list(siw0, siw1, siw2), col = clrs[1:3],
               plot.index = c(ii,jj), ylab = "Density")
abline(v = Sigma0[ii,jj], col = clrs[4])
legend(x = "topright",
       legend = c(parse(text = paste0("pi(Sigma[", ii, "*", jj, "])")),
                  parse(text = paste0("p(Sigma[", ii, "*", jj,
                                      "]*\" | \"*X)*\", Informative Prior\"")),
                  parse(text = paste0("p(Sigma[", ii, "*", jj,
                                      "]*\" | \"*X)*\", Noninformative Prior\"")),
                  parse(text = paste0("\"True value of \"*Sigma[", ii, "*", jj, "]"))),
       fill = clrs)

Monte Carlo calculation of niche region overlap metrics.

Description

Calculates the distribution of a niche region overlap metric for each pairwise species combination and user-specified niche region sizes.

Usage

overlap(
  niche.par,
  nreps,
  nprob,
  alpha = 0.95,
  species.names,
  norm.redraw = TRUE
)

Arguments

niche.par

A list with nspecies = length(niche.par), each element of which in turn is a list with elements mu and Sigma. See Details.

nreps

The number of overlap metric calculations for each species. Defaults to the smallest number of parameter samples supplied by niche.par. See 'Details'.

nprob

The number of normal draws for each Monte Carlo overlap metric calculation. See 'Details'.

alpha

Scalar or vector of niche region sizes for calculating the niche overlap metric. Defaults to 0.95.

species.names

Names of the species. Defaults to names(niche.par).

norm.redraw

Logical. If FALSE, the same nprob*nspecies iid N(0,1)N(0,1) draws are used for each calculation of the overlap metric. This increases the Monte Carlo error, but the procedure is about 1.5x faster. Defaults to TRUE.

Details

The overlap metric is the probability that a randomly drawn individual from species AA will be found within the niche region of species BB (for a given niche region size, e.g., alpha = .95). It is a single number which is a function of the parameters for each species, ΘA=(μA,ΣA)\Theta_A = (\mu_A, \Sigma_A) and ΘB=(μB,ΣB)\Theta_B = (\mu_B, \Sigma_B). This number is difficult to calculate directly, but easy to approximate stochastically by generating nprob draws from the distribution of species AA and counting the fraction of them which fall in the niche region of species BB.

Typically the true values of ΘA\Theta_A and ΘB\Theta_B are unknown and must be estimated from the data. Thus, the overlap metric is calculated for nreps combinations of samples from p(ΘAX)p(\Theta_A | X) and p(ΘBX)p(\Theta_B | X) which are supplied in niche.par.

See Swanson et al. (2015) for a detailed description of niche overlap and its calculation.

Value

Returns an array of size c(nspecies, nspecies, nreps, nlevels), where nlevels is the number of alpha levels at which to calculate the overlap metric. For each of the last two dimensions of the output array, the first two dimensions form an nspecies by nspecies matrix giving each pairwise calculation of overlap metric between two species for given ΘA\Theta_A, ΘB\Theta_B, and alpha. In each of these matrices, Species AA is along the rows of this matrix and Species BB is along the columns.

References

Swanson, H.K., Lysy, M., Stasko, A.D., Power, M., Johnson, J.D., and Reist, J.D. "A new probabilistic method for quantifying n-dimensional ecological niches and niche overlap." Ecology: Statistical Reports 96:2 (2015): 318-324. doi:10.1890/14-0235.1.

See Also

overlap.plot(), niw.post(), niiw.post().

Examples

# fish data
data(fish)

# generate parameter draws from the "default" posteriors of each fish
nsamples <- 500
system.time({
  fish.par <- tapply(1:nrow(fish), fish$species,
                     function(ii) niw.post(nsamples = nsamples, X = fish[ii,2:4]))
})

# overlap calculation. use nsamples = nprob = 1e4 for more accurate results.
system.time({
  over <- overlap(fish.par, nreps = nsamples, nprob = nsamples,
                  alpha = c(.95, .99))
})

# posterior expectations of overlap metrics
over.mean <- apply(over*100, c(1:2, 4), mean)
round(over.mean)

# posterior 95% credible intervals of overlap metrics
over.cred <- apply(over*100, c(1:2, 4), quantile,
                   prob = c(.025, .975), na.rm = TRUE)
round(over.cred[,,,1]) # display alpha = .95 niche region

Plot the overlap metric.

Description

Plots the posterior distribution of the niche region overlap metric calculated for each pairwise combination of species.

Usage

overlap.plot(
  over.stat,
  nbreaks = 50,
  equal.axis = FALSE,
  species.names,
  col,
  mean.cred = TRUE,
  mean.cred.col = "green",
  xlab
)

Arguments

over.stat

An array with dim(over.stat) = c(nspecies, nspecies, nreps) containing nreps calculations of the overlap metric for each pair of species. See 'Details'.

nbreaks

Number of breaks in the histogram. Defaults to 50.

equal.axis

Logical. If TRUE, all histograms in a given column of the output (corresponding to different Species AA for the same Species BB) are plotted on the same range.

species.names

A vector of species names. Defaults to dimnames(over.stat)[[1]].

col

A vector of the colours in which each species will be drawn.

mean.cred

Logical. If TRUE, vertical lines for mean and 95% credible intervals will be included in the historgram of each overlap metric.

mean.cred.col

Colour of the mean and credible interval lines in the histogram.

xlab

Optional plot title, located on the bottom. Default is no title.

Details

This function uses the overlap metric information in over.stat calculated by overlap() to create 2-dimensional plots of interspecific niche region overlap.

Value

Returns a series of histograms illustrating the probability of pairwise species overlap.

See Also

overlap(), niw.post(), niiw.post().

Examples

# fish data
data(fish)

# parameter draws from the "default" posteriors of each fish
nsamples <- 500
system.time({
  fish.par <- tapply(1:nrow(fish), fish$species,
                     function(ii) niw.post(nsamples = nsamples,
                                           X = fish[ii,2:4]))
})

# overlap calculation
system.time({
  over <- overlap(fish.par, nreps = nsamples, nprob = nsamples,
                  alpha = c(.95, .99))
})

# overlap plot
clrs <- c("black", "red", "blue", "orange") # color for each species
ii <- 1 # which niche region alpha level to use
overlap.plot(over[,,,ii], col = clrs, mean.cred.col = "turquoise",
             xlab = paste0("Overlap Probability (%) -- Niche Region Size: ",
                           dimnames(over)[[4]][ii]))

Overlap calculation for uniform niche regions.

Description

Overlap calculation for uniform niche regions.

Usage

overlap.unif(muA, SigmaA, muB, SigmaB, alphaA = 0.95, alphaB = 0.95, nprob)

overlap.sphere(muA, sigmaA, muB, sigmaB, alphaA = 0.95, alphaB = 0.95)

Arguments

muA, muB

Mean of niche regions.

SigmaA, SigmaB

Variance matrix of elliptical niche regions.

alphaA, alphaB

Probabilistic size of niche regions.

nprob

Number of uniform draws from niche region A.

sigmaA, sigmaB

standard deviations (scalars) of spherical niche regions.

Details

The overlap between niche regions AA and BB is defined as vol(AB)/vol(AB)vol(A \cap B)/vol(A \cup B), where the hypervolume of an nn-dimensional region SS is vol(S)=Sdxvol(S) = \int_S dx. For elliptical niche regions, there are simple formulas for vol(A)vol(A) and vol(B)vol(B). Thus, we need only determine the volume of the intersection vol(AB)vol(A \cap B), as the volume of the union is given by the formula vol(AB)=vol(A)+vol(B)vol(AB)vol(A \cup B) = vol(A) + vol(B) - vol(A \cap B).

For spherical niche regions, vol(AB)vol(A \cap B) has a closed-form expression (see 'References'). For elliptical regions, no such formula exists and a Monte Carlo method is used instead. That is, vol(AB)vol(A \cap B) is calculated by sampling uniformly from AA, then multiplying vol(A)vol(A) by the fraction of sampled points which fall into BB.

While the uniform overlap metric is invariant to permutation of niche regions AA and BB, the accuracy of the Monte Carlo calculation of vol(AB)vol(A \cap B) is not: higher accuracy is obtained when a higher fraction of sampled points are in the opposite niche region. overlap.unif() does not attempt to determine for which region this is the case, though the choice can be informed by plotting the niche regions, e.g., with niche.plot().

Value

A Monte Carlo estimate of the niche overlap for overlap.unif(), and an analytic calculation for overlap.sphere().

References

Li, S. "Concise formulas for the area and volume of a hyperspherical cap." Asian Journal of Mathematics & Statistics 4.1 (2011): 66-70. doi:10.3923/ajms.2011.66.70.

Examples

# spherical case: compare Monte Carlo method to analytic formula

d <- 2 # 2D example
mA <- rnorm(d)
mB <- rnorm(d)
sigA <- rexp(1)
SigA <- sigA^2 * diag(d)
sigB <- rexp(1)
SigB <- sigB^2 * diag(d)

# plot circles
ellA <- ellipse(mA, SigA)
ellB <- ellipse(mB, SigB)
plot(0, type = "n",
     xlim = range(ellA[,1], ellB[,1]),
     ylim = range(ellA[,2], ellB[,2]), xlab = "x", ylab = "y")
lines(ellA, col = "red")
lines(ellB, col = "blue")
legend("topright", legend = c("niche A", "niche B"),
       fill = c("red", "blue"), bg = "white")

# compare niche calculations
overlap.sphere(mA, sigA, mB, sigB)
overlap.unif(mA, SigA, mB, SigB, nprob = 1e5)

Random draws from a Normal-Inverse-Wishart distribution.

Description

Generates random draws from a Normal-Inverse-Wishart (NIW) distribution. Can be used to compare prior to posterior parameter distributions.

Usage

rniw(n, lambda, kappa, Psi, nu)

Arguments

n

Number of samples to draw.

lambda

Location parameter. See 'Details'.

kappa

Scale parameter. See 'Details'.

Psi

Scale matrix. See 'Details'.

nu

Degrees of freedom. See 'Details'.

Details

The NIW distribution p(μ,Σλ,κ,Ψ,ν)p(\mu, \Sigma | \lambda, \kappa, \Psi, \nu) is defined as

ΣW1(Ψ,ν),μΣN(λ,Σ/κ).\Sigma \sim W^{-1}(\Psi, \nu), \quad \mu | \Sigma \sim N(\lambda, \Sigma/\kappa).

Value

Returns a list with elements mu and Sigma of sizes c(n,length(lambda)) and c(nrow(Psi),ncol(Psi),n).

See Also

rwish(), niw.mom(), niw.coeffs().

Examples

d <- 4 # number of dimensions
nu <- 7 # degrees of freedom
Psi <- crossprod(matrix(rnorm(d^2), d, d)) # scale
lambda <- rnorm(d)
kappa <- 2
n <- 1e4

niw.sim <- rniw(n, lambda, kappa, Psi, nu)

# diagonal elements of Sigma^{-1} are const * chi^2
S <- apply(niw.sim$Sigma, 3, function(M) diag(solve(M)))

ii <- 2
const <- solve(Psi)[ii,ii]
hist(S[ii,], breaks = 100, freq = FALSE,
     main = parse(text = paste0("\"Histogram of \"*(Sigma^{-1})[", ii,ii,"]")),
     xlab = parse(text = paste0("(Sigma^{-1})[", ii,ii,"]")))
curve(dchisq(x/const, df = nu)/const,
      from = min(S[ii,]), to = max(S[ii,]), col = "red", add = TRUE)

# elements of mu have a t-distribution
mu <- niw.sim$mu

ii <- 4
const <- sqrt(Psi[ii,ii]/(kappa*(nu-d+1)))
hist(mu[,ii], breaks = 100, freq = FALSE,
     main = parse(text = paste0("\"Histogram of \"*mu[", ii, "]")),
     xlab = parse(text = paste0("mu[", ii, "]")))
curve(dt((x-lambda[ii])/const, df = nu-d+1)/const, add = TRUE, col = "red")

Random draws from a Wishart (or Inverse-Wishart) distribution.

Description

Generates a random samples from a Wishart distribution defined as W(Ψ,ν)W(\Psi, \nu), or an Inverse-Wishart distribution defined as W1(Ψ,ν)W^{-1}(\Psi, \nu).

Usage

rwish(n, Psi, nu, inv = FALSE)

Arguments

n

Number of samples to draw.

Psi

Scale matrix.

nu

Degrees of freedom.

inv

Logical. Setting inv = TRUE returns random matrices from an Inverse-Wishart distribution. See 'Details'.

Details

Setting inv = TRUE replaces Ψ\Psi by Psi1Psi^{-1} and inverts the output random matrices, such that they are being generated from an Inverse-Wishart W1(Ψ,ν)W^{-1}(\Psi, \nu) distribution.

Value

Returns an array of Wishart (or Inverse-Wishart) draws of size c(nrow(Psi),ncol(Psi),n).

See Also

rniw()

Examples

d <- 4 # number of dimensions
nu <- 7 # degrees of freedom
Psi <- crossprod(matrix(rnorm(d^2), d, d)) # scale matrix
n <- 1e4

Sigma <- rwish(n, Psi, nu)

# for any vector a, X = (a' Sigma a) has a const * chi^2 distribution
a <- rnorm(d)
X <- apply(Sigma, 3, function(S) crossprod(a, S %*% a))
const <- c(a %*% Psi %*% a)

hist(X, breaks = 100, freq = FALSE,
     main = parse(text = "\"Histogram of \"*X==a*minute*Sigma*a"),
     xlab = parse(text = "X==a*minute*Sigma*a"))
curve(dchisq(x/const, df = nu)/const,
      from = min(X), to = max(X), col = "red", add = TRUE)